What is a Neural Network?
Neural network algorithms are a collection of models which are adept at capturing non-linear patterns, or patterns that are allowed to reuse variables.
In the last decade, neural networks have seen a resurgence in popularity. Modern neural networks are toolkits of building blocks that allow model builders to design models that exactly represent the problem they wish to solve. Neural network libraries provide tools (such as auto-differentiation) to speed up the process of fitting that model to data.
Why are Neural Networks Important?
Neural networks thrive in high-signal, low-noise environments – in other words, there is a lot of relevant information to your target variable and not a lot of extraneous data or random volatility. This type of problem has complicated relationships that are difficult for normal machine learning models to tease out. Neural network models also complement traditional machine learning models like XGboost and make for good ensembles when both approaches are combined.